цифровая электроника
вычислительная техника
встраиваемые системы

 

Недорогая Arduino-совместимая плата с ПЛИС FPGA

Автор: Mike(admin) от 18-06-2015, 15:35

Если вы прожженный ардуинщик, но все же интересуетесь разработками с использованием плат на основе программируемых логических интегральных (ПЛИС) схем типа FPGA, то вас может заинтересовать недавнее появление отладочной платы DE0 Nano SoC Development Kit тайваньской компании Terasic.


Недорогая Arduino-совместимая плата с ПЛИС FPGA

В основе платы лежит микросхема Cyclone V с 40000 логических элементов и с интегрированным двухъядерным процессором ARM Cortex A9. Полезная особенность этой платы заключается в том, что благодаря расположению разъемов она совместима с шилдами Arduino.

Список недорогих отладочных плат с ПЛИС FPGA

Автор: Mike(admin) от 7-09-2014, 16:46

Сегодня представлено большое количество отладочных и оценочных плат с программируемым логическими интегральными схемами. Они различаются своими возможностями, размерами и ценой. Перед разработчиком зачастую встает вопрос, какую плату использовать для своего проекта. Чтобы ответить на этот вопрос, нужна информация о представленных на мировом рынке платах с ПЛИС.


ПЛИС

Представленный список недорогих (до $300) отладочных плат с их розничными ценами и возможностями отнюдь не исчерпывающий, но позволяет сориентировать разработчика в его непростом выборе.

Verilog. Базовый курс. Часть VI

Автор: Mike(admin) от 11-02-2014, 13:21

Структура If/Else


Последний основной момент Verilog, который мы разберем в рамках данного базового курса, это структура If/Else. При корректном использовании она представляет собой крайне полезный инструмент.


verilog

Сначала рассмотрим несколько правил, которые нужно соблюдать в отношении структуры If/Else в Verilog:



Verilog. Базовый курс. Часть V

Автор: Mike(admin) от 9-02-2014, 08:47

Поведенческое описание схем на Verilog


До сих пор мы рассматривали только структурную логику на Verilog, когда поведение схемы определяется только один раз, и эта схема не изменяется в зависимости от входных состояний (меняется только выходное значение в соответствии со спроектированной цепью). Поведенческая логика позволяет вам изменить поведение схемы на основе информации о сигналах на входах. Идея этого подхода напоминает циклы с условиями и конструкции типа if/else/case в C/C++.


Always-блоки


Сочетание слов «Verilog» и «поведенческий» у знающих людей вызывает ассоциацию с always-блоками. Always-блок представляет собой кодовую структуру, которая переопределяется всякий раз, когда изменяется состояние триггера. Что это значит? Рассмотрим простой always-блок с двумя входами sw0 и sw1.



Verilog. Базовый курс. Часть IV

Автор: Mike(admin) от 5-02-2014, 09:15

Циклы в Verilog


В предыдущей части мы на простом примере познакомились с принципом модульной конструкции в Verilog и создали RS-триггеры с помощью концепции модуля-экземпляра.


Но что нам делать, если потребуется создать много (например, 50) D-триггеров, которые должны быть соединены между собой в соответствии со схемой делителя частоты? Мы уже знаем, как сделать общий модуль для D-триггера, поэтому нужно сделать 50 экземпляров этого модуля и соединить входы тактового сигнала каждого модуля с выходом предыдущего, также подвести сигнал Сброс (Reset) ко всем модулям и вывод D через инверсию соединить с выходом Q. В общем, нужно сделать всё то, что показано на рисунке:


verilog

Вручную писать столько экземпляров (50 штук по 6 строк в каждом – 300 строк!) – не практично. Поэтому в Verilog для генерации большого числа одинаковых модулей мы можем воспользоваться циклом контроллера счетчика, который является чем-то вроде цикла for. Но, чтобы этот цикл работал правильно, мы должны тщательно продумать структуру делителя частоты.

Verilog. Базовый курс. Часть III

Автор: Mike(admin) от 3-02-2014, 08:30

Модульная конструкция


Модульная конструкция проекта – это, пожалуй, базовый принцип построения схем на ПЛИС, поэтому этой теме стоит уделить пристальное внимание.


verilog

Ранее мы уже касались термина «модуль», но теперь мы уточним некоторые важные нюансы. Каждый исходный файл Verilog содержит один и только один раздел определения модуля. Тогда как мы можем создавать сложные проекты, которые включают в себя множество мелких модулей? Давайте в качестве примера возьмем создание цепи управления светодиодом с использованием таймера. Что нужно для нашей схемы, чтобы светодиод мигал каждую секунду при нажатии, например, какой-нибудь кнопки, которая подавала бы на вход лог. «1»? Также на входе у нас есть таймер 50 МГц.

Verilog. Базовый курс. Часть II

Автор: Mike(admin) от 31-01-2014, 18:16

В первой части мы создали простой проект на Verilog типа «Hello World» и рассмотрели некоторые базовые моменты. В этой части мы углубимся в дело изучения этого языка и в сам процесс проектирования на ПЛИС.


Подготовка к программированию платы


В данном случае воспользуемся платой Digilent Basys 2 с ПЛИС Xilinx Spartan 3-E FPGA.


Digilent Basys 2

Итак, о чем же нам нужно в первую очередь позаботиться? Правильно, о UCF-файле. Следует помнить, что в зависимости от модели платы выводы могут иметь различное функциональное значение, то есть могут быть «привязаны» к светодиодам, кнопкам и т.п. Перед использованием платы стоит внимательно изучить схему.


Для данной платы назначение вывода будет следующим:

Verilog. Базовый курс. Часть I

Автор: Mike(admin) от 30-01-2014, 07:20

Проектирование схем на ПЛИС представляет собой не менее увлекательное и творческое занятие, чем программирование микроконтроллеров. Поэтому ниже будут показаны основы основ проектирования на языке Verilog, которые, возможно, станут отправной точкой для новичков в этом деле.


verilog

Перед началом изучения Verilog читатель должен иметь базовые представления о булевой логике и уметь решать хотя бы простейшие логические выражения. Например, чему будет равна функция F в выражении F = (A • B), если A в лог. «1», а B в лог. «0»? Если читатель знаком с языком C/C++, то ему будет легче понимать некоторые вещи, поскольку Verilog имеет схожий синтаксис. В целом, Verilog достаточно прост в изучении, поэтому поехали…

Иерархия в VHDL-коде

Автор: Mike(admin) от 1-11-2013, 18:11

Чтобы без особых проблем разрабатывать и поддерживать проекты, их нужно структурировать. В своих проектах люди используют абстракцию вне зависимости от характера разработки — будь-то электронное устройство, программа или механическая деталь. В этой статье пойдет речь о том, как использовать иерархию в VHDL-коде.


Зачастую весь VHDL-код умещают в одном файле на одном уровне. Если бы мы, к примеру, разрабатывали печатную плату, то не стали бы размещать на ней кучу дискретных компонентов. Вместо этого мы бы взяли микроконтроллеры, микросхемы памяти и другие устройства и классифицировали бы их как «компоненты», которые должны выполнять определенные функции. В некоторых случаях мы бы использовали на плате отдельные компоненты несколько раз. Это бы существенно упростило нашу работу.


плата с микросхемами

Рисунок 1 — плата с микросхемами

Если мы сравним разработку VHDL-кода с созданием печатной платы, то мы можем думать о нем, как об одноуровневой плате с большим количеством устройств и компонентов на ней. Плата не выполняет никаких других функций, кроме соединения определенным образом всех проводов. Этот же подход можно применить к VHDL, как показано на примере ниже.

Знакомство с программируемыми логическими интегральными схемами типов FPGA и CPLD

Автор: Mike(admin) от 29-08-2013, 15:23

В первой половине 60-х годов прошлого столетия электронные устройства разрабатывались на основе дискретных компонентов. Цифровые системы были похожи на лабиринты из лапши проводов, соединяющих компоненты. Однажды собрав схему, было сложно ее переделать. Иногда разработчики забывали о том, для чего вообще они проектировали свое устройство! Изготовление таких систем было очень затруднено, а при их починки или переделке у инженеров просто закрывались глаза от ужаса. Производители микросхем решили этот вопрос путем интеграции на одном кристалле не соединенных между собой вентилей ИЛИ-И, что в итоге назвали программируемым логическим устройством (programmable logic device или PLD).

PLD содержит в себе массив соединителей (предохранителей), которые могут быть разомкнуты (разорваны) или замкнуты для подключения к вентилям различных выводов. Мы можем запрограммировать PLD с помощью булевых выражений в виде суммы произведений, и тогда микросхема будет выполнять требуемую функцию.