Машинное обучение — это динамичная и мощная область компьютерных наук, которая проникла почти во все цифровые объекты, с которыми мы взаимодействуем, будь то социальные сети, наши мобильные телефоны, автомобили или даже бытовая техника. Тем не менее, еще есть много мест, куда машинное обучение хотело бы попасть, но ему трудно добраться. Это связано с тем, что многие современные модели машинного обучения требуют значительных вычислительных ресурсов и энергопотребления для выполнения логического вывода.
Потребность в высокопроизводительных вычислительных ресурсах привела к ограничению многих приложений машинного обучения облачными вычислениями, где легко доступны вычисления на уровне центра обработки данных. Чтобы позволить машинному обучению расширить свои возможности и открыть новую эру в данном направлении, мы должны найти способы упростить реализацию машинного обучения на небольших устройствах с более ограниченными ресурсами. Это стремление привело к созданию области, известной как Tiny Machine Learning (компактное машинное обучение) или TinyML (термин, зарегистрированный под торговой маркой TinyML Foundation, который стал синонимом технологии).